Search results for " Material Homogenization"
showing 3 items of 3 documents
A three-dimensional boundary element model for the analysis of polycrystalline materials at the microscale
2012
A three-dimensional multi-domain anisotropic boundary element formulation is presented for the analysis of polycrystalline microstructures. The formulation is naturally expressed in terms of intergranular displacements and tractions that play an important role in polycrystalline micromechanics, micro-damage and micro-cracking. The artificial morphology is generated by Hardcore Voronoi tessellation, which embodies the main statistical features of polycrystalline microstructures. Each crystal is modeled as an anisotropic elastic region and the integrity of the aggregate is restored by enforcing interface continuity and equilibrium between contiguous grains. The developed technique has been ap…
A Grain Boundary Formulation for the Analysis of Three-Dimensional Polycrystalline Microstructures
2013
A 3D grain boundary formulation is presented for the analysis of polycrystalline microstructures. The formulation is expressed in terms of intergranular displacements and tractions, that play an important role in polycrystalline micromechanics, micro-damage and micro-cracking. The artificial morphology is generated by Hardcore Voronoi tessellation, which embodies the main statistical features of polycrystalline microstructures. Each crystal is modeled as an anisotropic elastic region and the integrity of the aggregate is restored by enforcing interface continuity and equilibrium between contiguous grains. The developed technique has been applied to the numerical homogenization of cubic poly…
Effects of voids and flaws on the mechanical properties and on intergranular damage and fracture for polycrystalline materials
2013
It is widely recognized that the macroscopic material properties depend on the features of the microstructure. The understanding of the links between microscopic and macroscopic material properties, main topic of Micromechanics, is of relevant technological interest, as it may enable the deep understanding of the mechanisms governing materials degradation and failure. Polycrystalline materials are used in many engineering applications. Their microstructure is determined by distribution, size, morphology, anisotropy and orientation of the crystals. It worth noting that also the physical-chemical properties of the intergranular interfaces, as well as the presence of micro-imperfections within…